Types of Functions: Classification, One-One, Onto, Videos and Examples (2024)

Relations and Functions

What does the word function stand for? By the word function, we understand the responsibility or role one has to play. What is the function of the leaves of plants – to prepare food for the plant and store them? What is the function of the roots of plants? They absorb water and other nutrients from the ground and supply it to the plants and help them stand erect. Can we say that everyone has different types of functions? Let’s learn about some types of function in mathematics!

Suggested Videos

Types of Functions: Classification, One-One, Onto, Videos and Examples (1)

Types of Functions: Classification, One-One, Onto, Videos and Examples (2)

Types of Functions: Classification, One-One, Onto, Videos and Examples (3)

Types of Functions: Classification, One-One, Onto, Videos and Examples (4)

Types of Functions: Classification, One-One, Onto, Videos and Examples (5)

Types of Functions: Classification, One-One, Onto, Videos and Examples (6)

Types of Functions: Classification, One-One, Onto, Videos and Examples (7)

Types of Functions: Classification, One-One, Onto, Videos and Examples (8)Types of Functions: Classification, One-One, Onto, Videos and Examples (9)

Types of Functions: Classification, One-One, Onto, Videos and Examples (10)

').appendTo(this.scroller));n2const.rtl.isRtl?(this.previous=this.$widget.find(".nextend-thumbnail-next").on("click",this.previousPane.bind(this)),this.next=this.$widget.find(".nextend-thumbnail-previous").on("click",this.nextPane.bind(this))):(this.previous=this.$widget.find(".nextend-thumbnail-previous").on("click",this.previousPane.bind(this)),this.next=this.$widget.find(".nextend-thumbnail-next").on("click",this.nextPane.bind(this))),this.slider.stages.done("BeforeShow",this.onBeforeShow.bind(this)),this.slider.stages.done("WidgetsReady",this.onWidgetsReady.bind(this))},t.prototype.renderThumbnails=function(){var t;this.parameters.invertGroupDirection&&(t=Math.ceil(this.slider.visibleRealSlides.length/this.group));for(var i=0;i

');if(this.parameters.invertGroupDirection?s.appendTo(this.$groups.eq(Math.floor(i/t))):s.appendTo(this.$groups.eq(i%this.group)),s.data("slide",e),e.$thumbnail=s,this.parameters.thumbnail!==c){var h=e.getThumbnailType(),n=p[h]!==c?p[h]:"";d('

'+n+"

").css("background-image","url('"+e.getThumbnail()+"')").appendTo(s)}if(this.parameters.caption!==c){var r=d('');switch(this.parameters.caption.placement){case"before":r.prependTo(s);break;default:r.appendTo(s)}if(this.parameters.title!==c&&r.append('

'+e.getTitle()+"

"),this.parameters.description!==c){var o=e.getDescription();o&&r.append('

'+o+"

")}}}var a="universalclick",l="onDotClick";"mouseenter"===this.parameters.action?(a="universalenter",l="onDotHover"):this.slider.hasTouch()&&(a="n2click"),this.dots=this.scroller.find(".nextend-thumbnail-scroller-group > div").on(a,this[l].bind(this)),this.images=this.dots.find(".n2-ss-thumb-image")},t.prototype.onTap=function(t){i||(d(t.target).trigger("n2click"),i=!0,setTimeout(function(){i=!1},500))},t.prototype.onBeforeShow=function(){var t=!1;switch(this.parameters.area){case 5:t="left";break;case 8:t="right"}t&&(this.offset=parseFloat(this.$widget.data("offset")),this.slider.responsive.addHorizontalSpacingControl(t,this)),this.renderThumbnails(),this.slider.hasTouch()&&(N2Classes.EventBurrito(this.$widget.get(0),{mouse:!0,axis:"x",start:function(){this.bar.width();this._touch={start:parseInt(this.scroller.css(n2const.rtl.left)),max:0},this.getScrollerWidth()this._touch.start?this.previousPane():this.nextPane(),Math.abs(e.x)<10&&Math.abs(e.y)<10?this.onTap(t):nextend.preventClick(),delete this._touch}.bind(this)}),this.slider.parameters.controls.drag||this.$widget.on("click",this.onTap.bind(this))),this.widthPercent=this.$widget.data("width-percent"),this.thumbnailDimension={widthLocal:this.dots.width(),width:this.dots.outerWidth(!0),height:this.dots.outerHeight(!0),widthBorder:parseInt(this.dots.css("borderLeftWidth"))+parseInt(this.dots.css("borderRightWidth"))+parseInt(this.dots.css("paddingLeft"))+parseInt(this.dots.css("paddingRight")),heightBorder:parseInt(this.dots.css("borderTopWidth"))+parseInt(this.dots.css("borderBottomWidth"))+parseInt(this.dots.css("paddingTop"))+parseInt(this.dots.css("paddingBottom"))},this.thumbnailDimension.widthMargin=this.thumbnailDimension.width-this.dots.outerWidth(),this.thumbnailDimension.heightMargin=this.thumbnailDimension.height-this.dots.outerHeight(),this.imageDimension={width:this.images.outerWidth(!0),height:this.images.outerHeight(!0)},this.sideDimension=.25*this.thumbnailDimension.width,this.scroller.height(this.thumbnailDimension.height*this.ratio*this.group+"px"),this.bar.height(this.scroller.outerHeight(!0)+"px"),this.horizontalSpacing=this.bar.outerWidth()-this.bar.width(),this.slider.sliderElement.on({SlideWillChange:this.onSlideSwitch.bind(this),visibleRealSlidesChanged:this.onVisibleRealSlidesChanged.bind(this)})},t.prototype.onWidgetsReady=function(){this.activateDots(this.slider.currentSlide.index),this.slider.sliderElement.on("SliderResize",this.onSliderResize.bind(this)),this.onSliderResize()},t.prototype.filterSliderVerticalCSS=function(t){};var e=!(t.prototype.onSliderResize=function(){if(this.slider.visibleRealSlides.length){if(this.lastScrollerWidth!==this.getScrollerWidth()){var t,i=1,e=this.getScrollerWidth(),s=e-2*this.sideDimension;if((t=e/this.thumbnailDimension.width)=t&&(this.localSideDimension=.1*e,i=(s=e-2*this.localSideDimension)/(this.parameters.minimumThumbnailCount*this.thumbnailDimension.width),t=s/(this.thumbnailDimension.width*i),(t=e/(this.thumbnailDimension.width*i))e;e++)i[e].$thumbnail.addClass("n2-active")},t.prototype.resetPane=function(){this.goToDot(this.currentI)},t.prototype.previousPane=function(){this.goToDot(this.currentI-this.itemsPerPane*this.group)},t.prototype.nextPane=function(){this.goToDot(this.currentI+this.itemsPerPane*this.group)},t.prototype.getPaneByIndex=function(t){return t=Math.max(0,Math.min(this.dots.length-1,t)),this.parameters.invertGroupDirection?Math.floor(t%Math.ceil(this.dots.length/this.group)/this.itemsPerPane):Math.floor(t/this.group/this.itemsPerPane)},t.prototype.getScrollerTargetLeft=function(t){this.lastScrollerWidth=this.getScrollerWidth();var i=0;t===Math.floor((this.dots.length-1)/this.group/this.itemsPerPane)?(i=-t*this.itemsPerPane*this.thumbnailDimension.width*this.ratio,0===t?this.previous.removeClass("n2-active"):this.previous.addClass("n2-active"),this.next.removeClass("n2-active")):(0

Functions

We can define a function as a special relation which maps each element of set A with one and only one element of set B. Both the sets A and B must be non-empty. A function defines a particular output for a particular input. Hence, f: A→ Bis a function such that for a ∈ A there is a unique element b ∈ B such that (a, b) ∈f

Browse more Topics under Relations And Functions

  • Relations
  • Functions
  • Types of Relations
  • Representation of Functions
  • Composition of Functions and Invertible Function
  • Algebra of Real Functions
  • Cartesian Product of Sets
  • Binary Operations

Types of Functions

We have already learned about some types of functions like Identity, Polynomial, Rational, Modulus, Signum, Greatest Integer functions. In this section, we will learn about other types of function.

One to One Function

A function f:A→ B is One to One if for each element of A there is a distinct element of B. It is also known as Injective. Consider if a1 ∈ A and a2B, f is defined as f: A → B such that f (a1) = f (a2)

Types of Functions: Classification, One-One, Onto, Videos and Examples (11)

Download Relations Cheat Sheet PDF by clicking on Download button below

Types of Functions: Classification, One-One, Onto, Videos and Examples (12)

Types of Functions: Classification, One-One, Onto, Videos and Examples (13)

Many to One Function

It is a function which maps two or more elements of A to the same element of set B. Two or more elements of A have the same image in B.

Types of Functions: Classification, One-One, Onto, Videos and Examples (14)

Onto Function

If there exists a function for which every element of set B there is (are) pre-image(s) in set A, it is Onto Function. Onto is also referred as Surjective Function.

Types of Functions: Classification, One-One, Onto, Videos and Examples (15)

One – One and Onto Function

A function, f is One – One and Onto or Bijective if the function f is both One to One and Onto function. In other words, the function fassociates each element of A with a distinct element of B and every element of B has a pre-image in A.

Types of Functions: Classification, One-One, Onto, Videos and Examples (16)

Browse more topics under Relations and Functions

Relations and Functions

  • Binary Operations
  • Cartesian Product of Sets
  • Algebra of Real Functions
  • Composition of Functions and Invertible Function
  • Representation of Functions
  • Types of Relations
  • Functions
  • Relations

Other Types of Functions

A function is uniquely represented by its graph which is nothing but a set of all pairs of x and f(x) as coordinates. Let us get ready to know more about the types of functions and their graphs.

Identity Function

Let R be the set of real numbers. If the function f: RR is defined as f(x) = y = x, for x ∈ R, then the function is known as Identity function. The domain and the range being R. The graph is always a straight line and passes through the origin.

Types of Functions: Classification, One-One, Onto, Videos and Examples (17)

Constant Function

If the functionf: RR is defined as f(x) = y =c, for x ∈ R and c is a constant in R, then such function is known as Constant function. The domain of the function f is R and its range is a constant, c. Plotting a graph, we find a straight line parallel to the x-axis.

Types of Functions: Classification, One-One, Onto, Videos and Examples (18)

Polynomial Function

A polynomial function is defined by y =a0+ a1x + a2x2 + … + anxn, where n is a non-negative integer and a0, a1, a2,…,nR. The highest power in the expression is the degree of the polynomial function. Polynomial functions are further classified based on their degrees:

  • Constant Function: If the degree is zero, the polynomial function is a constant function (explained above).
  • Linear Function: The polynomial function with degree one. Such as y = x + 1 or y = x or y = 2x – 5 etc. Taking into consideration, y = x – 6. The domain and the range are R. The graph is always a straight line.

Types of Functions: Classification, One-One, Onto, Videos and Examples (19)

Quadratic Function: If the degree of the polynomial function is two, then it is a quadratic function. It is expressed as f(x) = ax2 + bx + c, where a ≠ 0 and a, b, c are constant & x is a variable.The domain and the range are R.The graphical representation of a quadratic function say, f(x) = x2 – 4 is

Types of Functions: Classification, One-One, Onto, Videos and Examples (20)

  • Cubic Function: A cubic polynomial function is a polynomial of degree three and can be denoted by f(x) = ax3 + bx2 + cx +d, where a ≠ 0 and a, b, c, and d are constant & x is a variable. Graph for f(x) = y = x3 – 5.The domain and the range are R.

Types of Functions: Classification, One-One, Onto, Videos and Examples (21)

Rational Function

A rational function is any function which can be represented by a rational fraction say, f(x)/g(x) in which numerator, f(x) and denominator, g(x) are polynomial functions of x, where g(x)≠ 0.Let a function f: RR is defined say, f(x) = 1/(x + 2.5). The domain and the range areR. The Graphical representation shows asymptotes, the curves which seem to touch the axes-lines.

Types of Functions: Classification, One-One, Onto, Videos and Examples (22)

Modulus Function

The absolute value of any number, c is represented in the form of |c|.If any function f: R→R is defined by f(x) = |x|, it is known as Modulus Function. For each non-negative value of x, f(x) = x and for each negative value of x, f(x) = -x, i.e.,

f(x) = {x, if x ≥ 0; – x, if x < 0.

Its graph is given as, where the domain and the range are R.

Types of Functions: Classification, One-One, Onto, Videos and Examples (23)

Signum Function

A function f: R→R defined by

f(x) = { 1, if x > 0;0, if x = 0;-1, if x < 0

Signum or the sign function extracts the sign of the real number and is also known as step function.

Types of Functions: Classification, One-One, Onto, Videos and Examples (24)

Greatest Integer Function

If a function f: R→R is defined by f(x) = [x], x ∈ X. It round-off to the real number to the integer less than the number. Suppose, the given interval is in the form of (k, k+1), the value of greatest integer function is k which is an integer. For example: [-21] = 21, [5.12] = 5. The graphical representation is

Types of Functions: Classification, One-One, Onto, Videos and Examples (25)

Solved Example for You

Question 1: Which of the following is a function?

Types of Functions: Classification, One-One, Onto, Videos and Examples (26)

Answer : Figure (iii) is an example of a function. Since the given functionmaps every element of A with that of B. In figure (ii),the given functionmaps one element of A with two elements of B (one to many). Figure (i) is a violation of the definition of the function. The given function does not map every element of A.

Question 2: What is meant by function and what are its types?

Answer: A function refers to a special relation which maps each element of one set with only one element belonging to another set. The various types of functions are as follows:

  • Many to one function
  • One to one function
  • Onto function
  • One and onto function
  • Constant function
  • Identity function
  • Quadratic function
  • Polynomial function
  • Modulus function
  • Rational function
  • Signum function
  • Greatest integer function

Question 3: How does the working of a function take place?

Answer: A function refers to an equation that provides only one answer for y for every x. There is an assignment of exactly one output to each input of a specified type by a function.

Question 4: How can one determine if a function is a function?

Answer: One can determine whether an equation is a function by solving for y. In case of an equation and a specific value for x, there shall be only one corresponding y-value for that particular x-value.

Question 5: Can we say that a parabola is a function?

Answer: Only those parabolas which open downwards or upwards are functions.

PreviousTypes of Relations
NextRepresentation of Functions

Customize your course in 30 seconds

Which class are you in?

5th

6th

7th

8th

9th

10th

11th

12th

Types of Functions: Classification, One-One, Onto, Videos and Examples (2024)

References

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Otha Schamberger

Last Updated:

Views: 6012

Rating: 4.4 / 5 (55 voted)

Reviews: 94% of readers found this page helpful

Author information

Name: Otha Schamberger

Birthday: 1999-08-15

Address: Suite 490 606 Hammes Ferry, Carterhaven, IL 62290

Phone: +8557035444877

Job: Forward IT Agent

Hobby: Fishing, Flying, Jewelry making, Digital arts, Sand art, Parkour, tabletop games

Introduction: My name is Otha Schamberger, I am a vast, good, healthy, cheerful, energetic, gorgeous, magnificent person who loves writing and wants to share my knowledge and understanding with you.